Las capas superiores de las atmósferas de los gigantes gaseosos (Saturno, Júpiter, Urano y Neptuno) son calientes, al igual que las de la Tierra. Pero a diferencia de la Tierra, el Sol está demasiado lejos de estos planetas exteriores para dar cuenta de las altas temperaturas. Su fuente de calor ha sido uno de los grandes misterios de la ciencia planetaria.

Un nuevo análisis de datos de la nave espacial Cassini de la NASA encuentra una explicación viable de lo que mantiene tan calientes a las capas superiores de Saturno y posiblemente a los otros gigantes gaseosos: auroras en los polos norte y sur del planeta. Las corrientes eléctricas, desencadenadas por las interacciones entre los vientos solares y las partículas cargadas de las lunas de Saturno, encienden las auroras y calientan la atmósfera superior. (Al igual que con la aurora boreal de la Tierra, estudiar auroras les dice a los científicos qué está sucediendo en la atmósfera del planeta).

El trabajo, publicado hoy en Nature Astronomy, es el mapeo más completo hasta ahora de la temperatura y la densidad de la atmósfera superior de un gigante gaseoso, una región que no se ha entendido bien.

"Comprender la dinámica realmente requiere una visión global. Este conjunto de datos es la primera vez que hemos podido observar la atmósfera superior de polo a polo mientras también vemos cómo la temperatura cambia con la profundidad", dijo Zarah Brown, autora principal del estudio, y un estudiante graduado en el Laboratorio Lunar y Planetario de la Universidad de Arizona.

Al construir una imagen completa de cómo circula el calor en la atmósfera, los científicos pueden comprender mejor cómo las corrientes eléctricas aurorales calientan las capas superiores de la atmósfera de Saturno y conducen los vientos. El sistema eólico global puede distribuir esta energía, que inicialmente se deposita cerca de los polos hacia las regiones ecuatoriales, calentándolas al doble de las temperaturas esperadas solo por el calentamiento del sol.

"Los resultados son vitales para nuestra comprensión general de las atmósferas superiores planetarias y son una parte importante del legado de Cassini", dijo el coautor del estudio, Tommi Koskinen, miembro del equipo del Spectograph Ultraviolet Imaging de Cassini. "Ayudan a abordar la cuestión de por qué la parte más alta de la atmósfera está tan caliente, mientras que el resto de la atmósfera, debido a la gran distancia del Sol, está fría".

Gestionado por el Laboratorio de Propulsión a Chorro de la NASA en el sur de California, Cassini fue un orbitador que observó a Saturno durante más de 13 años antes de agotar su suministro de combustible. La misión lo sumergió en la atmósfera del planeta en septiembre de 2017, en parte para proteger su luna Encelado, que Cassini descubrió que podría contener condiciones adecuadas para la vida. Pero antes de su caída, Cassini realizó 22 órbitas ultra cercanas de Saturno, una gira final llamada Grand Finale.

Fue durante el Gran Final que se recopilaron los datos clave para el nuevo mapa de temperatura de la atmósfera de Saturno. Durante seis semanas, Cassini apuntó a varias estrellas brillantes en las constelaciones de Orión y Canis Major cuando pasaron detrás de Saturno. Mientras la nave espacial observaba cómo las estrellas se elevaban y se colocaban detrás del planeta gigante, los científicos analizaron cómo la luz de las estrellas cambiaba a medida que pasaba por la atmósfera.

Medir cuán densa es la atmósfera dio a los científicos la información que necesitaban para encontrar las temperaturas. La densidad disminuye con la altitud, y la tasa de disminución depende de la temperatura. Descubrieron que las temperaturas alcanzan su punto máximo cerca de las auroras, lo que indica que las corrientes eléctricas aurorales calientan la atmósfera superior.

Las mediciones de densidad y temperatura juntas ayudaron a los científicos a calcular la velocidad del viento. Comprender la atmósfera superior de Saturno, donde el planeta se encuentra con el espacio, es clave para comprender el clima espacial y su impacto en otros planetas de nuestro sistema solar y exoplanetas alrededor de otras estrellas.

"A pesar de que se han encontrado miles de exoplanetas, solo los planetas de nuestro sistema solar pueden estudiarse con este tipo de detalle. Gracias a Cassini, tenemos una imagen más detallada de la atmósfera superior de Saturno en este momento que cualquier otro planeta gigante en el universo", dijo Brown.

La misión Cassini-Huygens es un proyecto cooperativo de la NASA, la Agencia Espacial Europea y la Agencia Espacial Italiana. El Laboratorio de Propulsión a Chorro de la NASA, o JPL, una división de Caltech en Pasadena, administra la misión de la Dirección de Misión Científica de la NASA en Washington. JPL diseñó, desarrolló y ensambló el orbitador Cassini.



Más información: Z. Brown et al, Un mapa de presión-temperatura de polo a polo de la termosfera de Saturno a partir de los datos de Cassini Grand Finale, Nature Astronomy (2020). DOI: 10.1038/s41550-020-1060-0